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Abstract—Based on the Karp-Rabin algorithm, a fast string
matching algorithm is presented in this paper. It is also a hash-
based approach, comparing the hash value of strings called
fingerprint rather than the letters directly. The characteristic of
the algorithm is that the hash function exploits bitwise operations
and also considers about the size of the alphabet and the length of
the pattern. We prove that the probability of a hash collision is
minute and that the average running time is linear. Through
a series of experiments, the remarkable performance of our
algorithm is demonstrated.
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I. INTRODUCTION

The exact string matching problem can be formalized as
follows. Given a pattern P of length m and a text T of length
n (n ≥ m), in which all characters are taken from a fixed
alphabet Σ, the problem is to find all occurrences of P in T .

Many algorithms, among which the most famous two are
the Knuth-Morris-Pratt [1] and the Boyer-Moore algorithm [2],
have been proposed to solve the problem. A comparison about
the performance of different string matching algorithms is
shown in Fig. 1 given in [3]. The map illustrates the following
points: Shift-Or algorithm [4] (prefix based) runs faster for
short patterns (up to length 8) on small alphabets (about length
4). Horspool algorithm [5] (suffix based) is more competitive
in larger alphabets. The better choice for longer patterns on
small alphabets is the BNDM (Backward Nondeterministic
Dawg Matching) algorithm [6] or BOM (Backward Oracle
Matching) algorithm [7] (factor based).

2 4 8 16 32 64 128 256

| Σ |

2

4

8

64

32

16

9 10

18
BOM

BNDM

Horspool

w

English

DNA

m

Shift-Or

4 7

50

50

3

29

100

8

Fig. 1. Map of experimental efficiency for different string matching
algorithms, given in [3].

Another approach is the Karp-Rabin algorithm [8], [9],
which uses the idea of fingerprinting that hashes the long
strings to much shorter symbols called fingerprints. This tech-
nique is widely used in string related problems and performs
well in practice. However, the original Karp-Rabin algorithm
is not efficient enough to compete with the above algorithms.

Our idea is to accelerate the computation of fingerprints
by bitwise operations on the basis of Karp-Rabin algorithm.
Meanwhile, the pattern length and the alphabet size are also
made use of to modulate the hash parameters. We prove that
the probability of a hash collision in our algorithm is very low,
and that the complexity of running time on average is linear.
Besides, the experimental results show that the new algorithm
could speed up the string matching process considerably. Not
only can it run faster than other prefix-based approaches, but
it also has dominance over the situation where alphabet and
pattern are both small. Nevertheless, as the size of the alphabet
and the length of the pattern grow, other sublinear approaches
such as Horspool algorithm [5] and BOM algorithm [7] would
perform better.

The following definitions are used in this paper.
Σ is a finite ordered alphabet, and |Σ| is its size. We denote

w the machine word length. The fingerprint of pattern P is
denoted by p, and that of the text block T [s + 1..s + m] is
denoted by ts. The notation (b`...b1)2 means a bit sequence
of length l in a computer word, and uses exponentiation on
bit to show its repetition (e.g. (1110000)2 is usually denoted
as 1304). Bitwise operations are denoted as follows:“|” (the
bitwise or), “&” (the bitwise and),“<<” (the bitwise shift-
left) and “>>” (the bitwise shift-right). The probability of
an event A is denoted Pr(A).

The rest of the paper is organized as follows. Section II
reviews the concept of fingerprinting and the classical Karp-
Rabin algorithm. Next, we devise a fast string matching
algorithm in section III. In section IV, a theoretical analysis
of the algorithm is given. And in section V, we provide our
experimental results. Finally, section VI gives our conclusions.

II. FINGERPRINTING AND MATCHING

In Karp-Rabin algorithm [8], [9], strings are hashed to fin-
gerprints using the rolling hash function. During the process,
the text blocks in a window moving through the text will be



handled consecutively. Based on the old fingerprint, the new
one can be rapidly got in constant time only by removing the
old value from the window and adding in new value.

As a result, Karp-Rabin algorithm simply needs to compare
the fingerprints of strings rather than the letters directly.
Only when the two fingerprints are equal, does the algorithm
implement a checking to validate. If the original strings do not
agree, then it produces a false match, otherwise, reports an
occurrence. The pseudo-code is shown below. Typically, q is
taken to be a large prime and d is |Σ|.

Karp-Rabin(T , n, P , m, d, q)
1: . Preprocessing
2: p← 0
3: t0 ← 0
4: h← dm−1 mod q
5: for i← 1 to m do
6: p← (d · p+ P [i]) mod q
7: t0 ← (d · t0 + T [i]) mod q
8: end for
9: . Searching

10: for s← 0 to n−m do
11: if p = ts then
12: if P [1..m] = T [s+ 1..s+m] then
13: report an occurrence
14: end if
15: end if
16: if s < n−m then
17: ts+1 ← (d(ts − T [s+ 1] · h) + T [s+m+ 1]) mod q
18: end if
19: end for

In Karp-Rabin algorithm, the probability of a false match
under a Bernoulli model with equiprobability of letters is ≤ 1

q

[10]. And the expected running time is O(m+ n) [8].
However, in spite of the minuscule probability of a false

match, Karp-Rabin algorithm is still inferior to other string
matching algorithms in practice. Closer scrutiny shows that it
is the complex arithmetic operations rather than checking for
false matches that circumscribes the algorithm’s performance.

III. NEW ALGORITHM TO STRING MATCHING

Aimed at improving the Karp-Rabin algorithm, we propose
a faster hash function which avoids the complex arithmetic
operations. More precisely, we take β least significant bits
(LSB) from each character, which can be done efficiently via
bitwise operations. Then, by using rolling hash technique, a
binary sequence can be got and used as the fingerprint of the
string. Assuming the alphabet contains 128 ASCII characters
and β = 5, several LSBs are shown in Table I.

TABLE I
THE LSBS OF SOME CHARACTERS. IT IS POSSIBLE THAT TWO DIFFERENT

CHARACTERS HAVE THE SAME LSB.

Character ASCII Value Binary LSB
L 76 1001100 01100
a 97 1100001 00001
c 99 1100011 00011
e 101 1100101 00101
l 108 1101100 01100

Based on the hash technique above, we give two algorithms
which are slightly different in the strategy of computing β and
the hash process.

Algo1(T , n, P , m, |Σ|)
1: . Preprocessing
2: return an error if m > w
3: β ← b w

m
c

4: p← 0
5: t0 ← 0
6: for i← 1 to m do
7: p← (p << β) | (P [i] & 0w−β1β)
8: t0 ← (t0 << β) | (T [i] & 0w−β1β)
9: end for

10: . Searching
11: for s← 0 to n−m do
12: if p = ts then
13: if |Σ| ≤ 2β OR P [1..m] = T [s+ 1..s+m] then
14: report an occurrence
15: end if
16: end if
17: if s < n−m then
18: ts+1 ← ((ts << β) & 0w−βm1βm) | (T [s + m +

1] & 0w−β1β)
19: end if
20: end for

Algo2(T , n, P , m)
1: . Preprocessing
2: m′ ← min(w, 2blog2mc)
3: β ← w

m′

4: p← 0
5: t0 ← 0
6: for i← 1 to m′ do
7: p← (p << β) | (P [i] & 0w−β1β)
8: t0 ← (t0 << β) | (T [i] & 0w−β1β)
9: end for

10: . Searching
11: for s← 0 to n−m do
12: if p = ts then
13: if P [1..m] = T [s+ 1..s+m] then
14: report an occurrence
15: end if
16: end if
17: if s < n−m then
18: ts+1 ← ((ts << β) | (T [s+m′ + 1] & 0w−β1β)
19: end if
20: end for

The two algorithms share the same structure. They first
calculate β according to the size of Σ and the length of the
pattern P (lines 1 ∼ 3), then compute the fingerprints of the
pattern and the first block of text (lines 4 ∼ 9). At last they
maintain a loop that iterates s from 0 to n −m (lines 10 ∼
20). In each stage, the algorithms compute ts+1 through ts
and compare the fingerprint of the pattern with that of the text
block. If p = ts, then they check if P [1..m] = T [s+ 1..i−1].
Consequently, the two algorithms report valid occurrences of
P in T and only them.

Yet, Algo1 emphasizes that each character in the pattern
should contribute to the fingerprint with equal information.



Moreover, if |Σ| ≤ 2β , it is unnecessary to check P [1..m] =
T [s + 1..s + m] when p = ts, since the information of the
strings is all packed in one computer word. However, it can
not work in the circumstances where m > w.

Unlike Algo1, Algo2 fits the fingerprint of the pattern just
within one computer word. To achieve this, only its prefix of
length m′ is hashed, restricted to m′ ≤ m and m′ = 2r (r ∈
Z), which avoids the use of the bit mask 0w−βm1βm in Algo1
because every “<<” operation in Algo2 can implicitly do this.

To see the suggested algorithm is essentially a variant of the
Karp-Rabin algorithm, consider the line 17 of the pseudo-code
of Karp-Rabin algorithm, by properly choosing d and q, all the
arithmetic operations can be replaced by bitwise operations:

ts+1 ← (((ts & H) << D) | T [s+m+ 1]) & Q.

And equivalently

ts+1 ← ((ts << D) & Q) | T [s+m+ 1].

Then it makes no difference with line 18 of Algo1 except
that Algo1 does T [s+m+ 1] & 0w−β1β first, which means
our algorithms can be seen as a special implementation of
Karp-Rabin algorithm by adaptively adjusting the parameters
and optimally pre-handling the input strings.

IV. THEORETICAL ANALYSIS

In this section we prove that the two proposed algorithms
have a linear expected running time, and derive their collision
probability for a better understanding of their difference in
performance. Before the proof, two assumptions are made:
• All the strings are randomly built under a Bernoulli model

in which each letter in Σ occurs with the same probability.
• m ≤ 2w, which is the case of most applications.
Lemma 1: When Algo1 is executed, the probability of ts =

p, s ∈ {0, 1, · · · , n−m− 1} is

Pr(ts = p) =
1

min(|Σ|m, 2βm)
. (1)

Proof: The fingerprints ts and p contain βm bits totally,
with each character contributing a binary sequence of β bits
whose number of combinations is min(|Σ|, 2β). Because of
the equal probability of letters, we can clearly get the answer
by the product rule.

Lemma 2: When Algo2 is executed, the probability of ts =
p, s ∈ {0, 1, · · · , n−m− 1} is

Pr(ts = p) =
1

min(|Σ|m′ , 2βm′)
. (2)

Proposition 1: The expected running time of Algo1 is
O(n+m).

Proof: The Algo1 uses O(n + m) time to compute the
fingerprints of the pattern and the text.

When |Σ| ≤ 2β , the information of the strings is all packed
in the fingerprints as we mentioned before, no extra check
needed, thus the running time is O(n + m). Otherwise, we
take O(m) time to check a match, and the expected times of
such checking is 1

2βm
· (n −m + 1) according to Lemma 1.

Notice that 2βm = 2b
w
m c·m > 2w−1 and m ≤ 2w , so the

expected running time is

O(n+m) +O(m) · 1

2βm
· (n−m+ 1) = O(n+m). (3)

Proposition 2: The expected running time of Algo2 is
O(n+m′).

Theorem 1: When Algo1 is executed, the probability of a
false match is

Pr(collision) <
1

2w−1
. (4)

Proof: The probability of a match that P [1..m] = T [s+
1..s + m] is 1

|Σ|m . And by Lemma 1, we get the probability
of a false match

Pr(collision) =
1

min(|Σ|m, 2βm)
− 1

|Σ|m

= max(0,
1

2b
w
m
c·m −

1

|Σ|m )

<
1

2b
w
m
c·m

≤ 1

2w−1
.

Theorem 2: When Algo2 is executed, the probability of a
false match is

Pr(collision) < max(
1

|Σ|m′ ,
1

2w
). (5)

Proof: The probability of a match that P [1..m] = T [s+
1..s + m] is 1

|Σ|m . By Lemma 2, we get the probability of a
false match

Pr(collision) =
1

min(|Σ|m′ , 2βm′)
− 1

|Σ|m

= max(
1

|Σ|m′ ,
1

2w
)− 1

|Σ|m

<max(
1

|Σ|m′ ,
1

2w
).

From Fig. 2, we know that the property of the collision
probability of Algo2, which is not stable in all cases, is
different from that of Algo1.
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Fig. 2. Characteristics of m and the collision probability of Algo2 in different
alphabet, where w = 32. See that 1

2w
is negligible here, so the curves are

nearly the same as 1

|Σ|m′ − 1
|Σ|m . Therefore, they go to 0 when w mod
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V. EXPERIMENTAL RESULTS

The previous sections indicate that Algo2 has a larger
probability of a false match while its hash process is more
desirable. Actually, in the experiments, there are only two
cases that Algo1 has a superior performance: (1) m ≤ 7 with
|Σ| = 2. (2) m ≤ 3 with |Σ| ≤ 6. And it can be seen in Fig. 2
that the two cases are exactly the situation where the collision
probability of Algo2 ≥ 0.02.

Therefore, in the cross comparison of the well know algo-
rithms, we used a combination of two algorithms called Algo3,
which runs Algo1 in above two cases, and otherwise Algo2.
Additionally, from line 2, 3 of the Algo2, we know that β has
only log2 w different values. To maximize the performance of
the algorithm, our implementation uses log2 w subfunctions in
which different values of β are treated as constants.

The referential algorithms are implemented according to
the suggestion in [11]. Their implementation of Karp-Rabin
algorithm is a particular fast version, which choose d = 2 and
q = 2w, rendering bitwise operations applicable.

The experiments were performed on a computer under
Linux 2.6.22 and all the programs were compiled by gcc
4.3 using O1 optimization. We first built a text of 10M
randomly. Then different algorithms were employed to search
300 random patterns of length m for all matches in the text,
respectively. The comparison among their total running time
is given in Table II and Fig. 3.

TABLE II
EXPERIMENTAL RESULTS IN RUNNING TIME ON ALPHABETS OF SIZE 4, 8,
16, 32. (TIME IN SECONDS). HOR IS ABBREVIATED FROM HORSPOOL, KR

IS KARP-RABIN AND SO IS SHORT FOR SHIFT-OR.

|Σ| = 4 |Σ| = 8
m Hor BOM KMP KR SO Algo3 Hor BOM KMP KR SO Algo3
2 32.9 40.6 40.8 34.9 23.2 18.4 26.1 30.4 35.4 30.9 23.3 19.1
4 23.0 26.4 42.2 30.0 23.2 18.5 15.2 19.0 36.0 28.6 23.3 18.3
6 19.1 18.6 42.0 28.4 23.3 18.3 11.5 13.7 36.0 28.1 23.2 18.1
8 17.5 14.9 41.8 27.9 23.2 18.1 9.8 10.7 35.9 27.8 23.3 18.1

16 16.7 8.3 41.9 27.9 23.5 18.2 7.3 5.7 35.8 27.8 23.2 18.1
32 16.4 4.8 41.9 27.8 23.2 18.0 6.6 3.4 35.8 27.8 23.3 18.1

|Σ| = 16 |Σ| = 32
m Hor BOM KMP KR SO Algo3 Hor BOM KMP KR SO Algo3
2 23.3 25.9 33.2 29.1 23.3 18.3 22.0 23.6 31.9 28.4 23.3 18.1
4 12.5 14.9 33.1 28.1 23.3 18.1 11.5 12.8 32.0 28.0 23.3 18.1
6 8.9 10.9 33.1 27.9 23.2 18.1 7.9 9.1 32.0 27.8 23.3 18.1
8 7.1 8.4 33.1 27.8 23.3 18.1 6.2 6.9 32.0 27.8 23.3 18.1

16 4.5 4.8 33.2 27.8 23.3 18.1 3.6 4.2 32.0 27.9 23.3 18.1
32 3.5 2.8 33.2 27.8 23.3 18.1 2.3 2.5 31.9 27.8 23.2 18.1

Our implementation performed well in the situation in
which the pattern length and the alphabet size are both small,
and about 28% faster than Shift-Or algorithm in all cases. This
is because the Shift-Or algorithm needs to refer one more table
in the matching process.

VI. CONCLUSION

Building on Karp-Rabin algorithm, we presented a string
matching algorithm which outperforms other prefix-based
approaches. In addition, it is even more efficient for small
alphabets, which allows it a faster algorithm in searching on
DNA and amino acid sequences.
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Fig. 3. Experimental results in running time on alphabets of size 4, 8, 16,
32. The X-axis represents the length of the pattern and the Y-axis stands for
the total search time in seconds.

Future work is to extend the hash function. For example, the
key parameter β could be calculated differently for different
applications. Moreover, having noted that the fingerprints
produced by our algorithms still preserve the information of
characters (LSB) orderly, the idea may also serve to solve
approximate string matching problems efficiently.
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